ISSN 1600-5368

D. Scott Bohle* and Jean Fotie

Department of Chemistry, McGill University, 801 Sherbrooks St. W., Montreal, PQ, Canada H3A 2K6

Correspondence e-mail: scott.bohle@mcgill.ca

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.002 Å R factor = 0.043 wR factor = 0.134 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 13 July 2006 Accepted 20 July 2006

3-(1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)prop-2-enamide (fagaramide)

The title compound, $C_{14}H_{17}NO_3$, is a natural product which can be isolated from many plants. In the molecule, the amide group adopts a planar Z geometry.

Comment

Many plants contain the alkaloid fagaramide (Taubock & Winterstein, 1933), (I), which has been shown to be a pharmaceutically active agent in many natural products (Adesina & Reisch, 1988). Although it is well known in terms of composition (Thoms & Thumen, 1912), its structure has not been reported. We describe here the room-temperature crystal structure of (I).

In the molecular structure of (I) (Fig. 1), there is a *trans* or E arrangement of substituents around the styryl bond and the amide group adopts a Z geometry. Comparison of the amide bond lengths in the Cambridge Structural Database (Version 5.27; Allen, 2002) for the 22 entries with the fragment corresponding to a secondary cinnamoylamide reveals that, while the styryl bond length C6-C7 in (I) is close to average values, the amide C=O and C-N bond lengths, C5=O1 and C5-N1, are slightly longer and shorter than the average values of 1.227 and 1.357 Å, respectively. This suggests a slightly stronger amide interaction in (I), but this requires spectroscopic verification.

Experimental

Compound (I) was isolated from Garcinia lucida by the methods of Goodson (1921) and Thoms & Thumen (1912) and recrystallized as long colorless prisms from a mixture of hexane and ethyl acetate (7:3).

Crystal data	
C ₁₄ H ₁₇ NO ₃	$D_x = 1.235 \text{ Mg m}^{-3}$
$M_r = 247.29$	$D_m = 1.22 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	D_m measured by flotation
a = 8.618 (6) Å	Mo $K\alpha$ radiation
b = 9.213 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.785 (11) Å	T = 298 (2) K
$\beta = 93.637 \ (8)^{\circ}$	Prism, colorless
$V = 1330.0 (15) \text{ Å}^3$	$0.30 \times 0.20 \times 0.15 \text{ mm}$
Z = 4	

© 2006 International Union of Crystallography All rights reserved

organic papers

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Siemens, 1996) $T_{\min} = 0.965, T_{\max} = 0.990$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.134$ S = 1.042856 reflections 163 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

O1-C5	1.239 (2)	C8-C9	1.408 (2)
N1-C5	1.3338 (19)	C9-C10	1.365 (2)
N1-C4	1.4513 (19)	C10-O3	1.374 (2)
C1-C3	1.532 (2)	C10-C11	1.381 (2)
C2-C3	1.508 (3)	C11-O2	1.367 (2)
C3-C4	1.528 (3)	C11-C12	1.364 (2)
C5-C6	1.486 (2)	C12-C13	1.394 (2)
C6-C7	1.327 (2)	O2-C14	1.421 (3)
C7-C8	1.464 (2)	C14-O3	1.433 (2)
C8-C13	1.392 (2)		

Almost all H atoms were located in difference Fourier maps but they were eventually placed in calculated positions (C-H = 0.93-0.98 Å) and refined in the riding-model approximation with $U_{iso}(H) =$ $1.2U_{eq}(C,N)$, or $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl C atoms.

11058 measured reflections 2856 independent reflections 2025 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 26.9^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0783P)^2 \\ &+ 0.0729P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.15 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.21 \text{ e } \text{\AA}^{-3} \end{split}$$

 $\begin{array}{c} c_{12} \\ c_{13} \\ c_{14} \\ c_{14$

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge NSERC for support in the form of a discovery grant.

References

- Adesina, S. K. & Reisch, J. (1988). J. Nat. Prod. 51, 601-602.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Goodson, J. A. (1921). Biochem. J. 15, 123-128.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SMART (Version 5.6), SAINT (Version 6.45), SADABS (Version) 2.10 and SHELXTL (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Taubock, K. & Winterstein, A. (1933). *Handb. Pflanzenanalyse*, **4**, 190–221. Thoms, H. & Thumen, F. (1912). *Ber. D. Chem. Gess.* **44**, 3717–3730.